## Nomenclature

- As, A x-sectional area of pile shaft [in<sup>2</sup> (cm<sup>2</sup>)]
- $A_h$  projected helix area {ft<sup>2</sup> (m<sup>2</sup>)}
- B footing width (base width) {ft (m)}
- c soil cohesion { $Ib/ft^2 (kN/m^2)$ }
- $C_a$  adhesion ( $\alpha \times C$ ) [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- D vertical depth to helix plate [ft(m)]
- $D_h \qquad helix \ diameter \ \{ft^2 \ (m^2)\}$
- D<sub>p</sub> grout column diameter [in(cm)]
- D<sub>r</sub> relative density (%)
- $D_s$  diameter of pile shaft [in<sup>2</sup> (cm<sup>2</sup>)]
- E modulus of elasticity of pile shaft mat I [lb/in<sup>2</sup> (kN/m<sup>2</sup>)]
- E<sub>s</sub> secant modulus of the soil response curve
- f'c concrete compressive strength [lb/in<sup>2</sup> (kN/m<sup>2</sup>)]
- $f_s$  sum of friction and adhesion between soil and pile shaft [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- FS factor of safety (unitless)
- GWT ground water table, or phreatic surface [ft (m)]
- HS High Strength anchor consisting of pipe shaft foundation elements
- HPM HELICAL PULLDOWN™ Micropile
- HSF Helical Screw Foundation
- I moment of inertia of pile shaft [in<sup>4</sup> (cm<sup>4</sup>)]
- IL liquidity index (%)
- K end condition parameter (unitless)
- K<sub>a</sub> coefficient of active earth pressure
- k<sub>h</sub> modulus of subgrade reaction [lb/in<sup>3</sup> (kN/m<sup>3</sup>)]
- $K_o$  coefficient of earth pressure at rest
- K<sub>p</sub> coefficient of passive earth pressure
- $K_t$  empirical torque factor [ft<sup>-1</sup> (m<sup>-1</sup>)]
- L length of pile [in (cm)]
- LL liquid limit, (%)
- N blow count per ASTM D 1586 Standard Penetration Test (blows) (unitless)
- N<sub>c</sub> bearing capacity factor, for cohesive component of soil = 9
- $N_q$  bearing capacity factor, for non-cohesive component of soil
- Nγ bearing capacity factor
- O<sub>cr</sub> over consolidation ratio
- P axial load applied to helical screw foundation, either in tension or compression [lb(kN)]
- P<sub>a</sub> active earth pressure
- pH hydrogen ion concentration



- P<sub>p</sub> passive earth pressure
- PISA<sup>¤</sup> Power Installed Screw Anchor (registered trademark, Hubbell Power Systems)
- PI plasticity index (°/<sub>o</sub>)
- PL plastic limit (%)
- $P_o$  average overburden pressure for a given shaft element  $\Delta L_F$  [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- Q axial compressive load [lb (kN)]
- Q<sub>F</sub> shaft resistance due to skin friction [lb (kN)]
- $Q_h \qquad \text{individual helix capacity } \{ lb \ (kN) \} \ due \ to \ end-bearing$
- $Q_s$  capacity upper limit, determined by helix strength {Ib (kN)}
- $Q_t$  total multi-helix anchor capacity [lb (kN)] =  $\Sigma Q_H + Q_F$
- Q<sub>u</sub> ultimate uplift capacity [ft-lb (kN-m)]
- Qult ultimate capacity [lb (kN)]
- R soil resistivity (Ω-cm)
- RQD rock quality designation per ASTM D-5878
- RR Round Rod anchor
- S section modulus of pile shaft [in<sup>3</sup> (cm<sup>3</sup>)]
- SS **S**quare **S**haft helical screw foundation type comprising a round-cornered-square solid steel central shaft.
- $\delta_{net}$  total deflection minus the elastic movement of the helical screw foundation [in (mm)]
- SPT Standard Penetration Test, per ASTM D-1586
- $\delta_{\text{TOTAL}}~$  axial deflection or movement of helical screw foundation [in (mm)]

 $\delta_{\text{ELASTIC}}$  recoverable movement resulting from elastic shortening or lengthening of pile material defined as the axial load times the pile length divided by its axial stiffness (PL/AE) [in (mm)]

- $S_F$  average friction resistance on pile shaft [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- T installation torque [ft-lb (kN-m)]
- Tave average installation torque [ft-lb (kN-m)]
- u pore water pressure in the soil pores in a cross section [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- w<sub>n</sub> natural (in situ) water, or moisture content (%)
- $\gamma_{wet}$  total unit weight of the soil [lb/ft<sup>3</sup> (kN/m<sup>3</sup>)]
- $\gamma_{dry}$  dry unit weight of the soil [lb/ft<sup>3</sup> (kN/m<sup>3</sup>)]
- γ effective (submerged) unit weight of the soil [lb/ft<sup>3</sup> (kN/m<sup>3</sup>)]
- $au_{f}$  the shearing stress at failure, or the shear strength [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- $\phi$  angle of internal friction (degrees)
- $\sigma$  total stress acting on the failure plane [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- $\sigma$  effective stress acting on the failure plane [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- q overburden pressure on a helix plate, a.k.a. vertical stress [lb/ft<sup>2</sup> (kN/m<sup>2</sup>)]
- q effective overburden pressure on a helix plate a.k.a. effective vertical stress [lb/ft<sup>2</sup>(kN/m<sup>2</sup>)]
- $q_u \qquad \text{unconfined compressive strength of soil sample} \left[ \text{lb/ft}^2 \left( k\text{N/m}^2 \right) \right]$
- $\Delta LF$  incremental pile length over which pile diameter and skin friction are taken as a constant [ft (m)]
- $\alpha$  adhesion factor (unitless)

